
OPERATION manual for AIRLEADER Compressor-Management

AIRLEADER combines compressors of different sizes to an optimum unit

Almost the best strategy to save energy

For program version and serial number press


```
7.05 bar 37.2 m3/min

V - 07 - AM - 3.003

Version 3.003 Sep 20 2009 14:35:07

Serial number = 2401-01611560

MAC address = 00.50.C2.64.4F.97

IP-Address = 192.168. 0.100

Subnet mask = 255.255.255

Standartgateway = 192.168. 0. 1
```

SUMMARIES

PART 1	AIRLEADER Master MODUL
Page 1	Summaries
Page 2	Functional description
Page 3	Display and key control
	VARIABLE SPEED COMPRESSOR
Page 4	Control and interpretation of regulated compressors
Page 5	Configuration of regulation range and regulation buffer
Page 6	Minimum flow rate and remote pressure supply
Page 7	Station with 2 variable speed compressors
	PROGRAMMING COMPRESSOR CONTROL
Page 8	Programming load / unload compressors
Page 9	Programming variable speed compressors
Page 10	Programming pressure and rank profiles
Page 11	Programming of analog inputs of Master Module
Page 12	Programming analog and digital inputs of connection modules (17-24)
Page 13	Digital input and analog output on connection module (17-24)
	REAL TIME CLOCK
Page 14	Programming real time clock
Page 15	Clock programming notes
	STATUS DATA and COMMISIONING
Page 16	Status data of compressors and connection modules
Page 17	Display features
Page 18	IP-addresse and network settings
Page 19	Commissioning and switching functions
PART 2	

FUNCTIONAL DESCRIPTION

AIRLEADER combines compressors of different sizes

to an optimum unit which automatically adapts to the production based on the current compressed air consumption. It is made sure that it is always the most efficient compressor combination which generates the compressed air necessary for production, independent of the manufacturer and the performance. The system pressure remains within the smallest limits. It is seen that the costs are kept as low as possible. The compressor performances and a common pressure difference are programmed in for all the compressors. Based on this information, AIRLEADER permanently calculates the current compressed air consumption and the volume of the compressed air system. The self-learning 8-fold calculation depth makes it possible to adapt the compressors to the changes in consumption in a dynamic way.

Automatic compressor change as per compressed air consumption

If all the compressors are on the same rank, they are working fully automatically and based on real air consumption. The priority of the compressors is adapted to the production process in real time with a useful hysterisis calculation. It is always the compressor combination with the lowest cycle rates which is running and thus with the lowest idle times. Big compressors are only running when needed. The smaller compressors are running under load instead of idling the big compressors. The compressors auto-regulate the motor start limitations.

The status of the compressors is constantly monitored.

If a running compressor displays a malfunction within the pressure range or is switched off for service, its performance is taken over by other compressors. If several compressors are needed to do this, addition is made time-delayed. Load and total running times are stored for the individual compressors. The operating hours are deleted, if required.

Connecting of compressors

is effected using the connecting moduls this being installed in the electrical housing of the compressor on the DINrail. The connection to the Master control is made over the industry us RS 485 bus. The operating voltage of 24 volts AC/DC can be attached to the tension supply of the compressor. If a power supply of 24V AC or DC is available from the compressor electric.

Compressor fault

If a compressor goes on fault the display shows a symbolic cross. On fault of reported compressor the performance gets the compressed air consumption the most favorable compressors combination replaces through this one. The fault report for the compressors is activated at the AIRLEADER an common fault signal.

Faults from the connection modules will be given out over the digital output "General fault of external equipment.

Compressor motor running

If these inputs get connected, AIRLEADER receives the motor running time. The total hours are also stored as the load hours. The advertisement of the hours can be retrieved over the display. The running time compensation provides equally running times of compressors with same capacity.

Compressor ready input

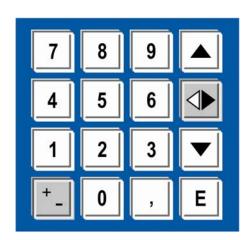
These input must be connected so that compressor management AIRLEADER recognizes the readiness of the compressors. If these input don't get connected, the compressor cannot be in operation. A fault signal isn't activated.

der Kompressor nicht bereit und kann nicht angewählt werden. Eine Störmeldung wird nicht aktiviert.

If the fault input is not connected

and one of the compressors stops due to a malfunction, the display will show a wrong compressed air consumption (too high = by the value of the faulty compressor). For this reason it is advisable to connect the malfunction signal inputs, so that the compressed air consumption is always shown correctly and the capacity is also corrected and immediately after reaching the P min.

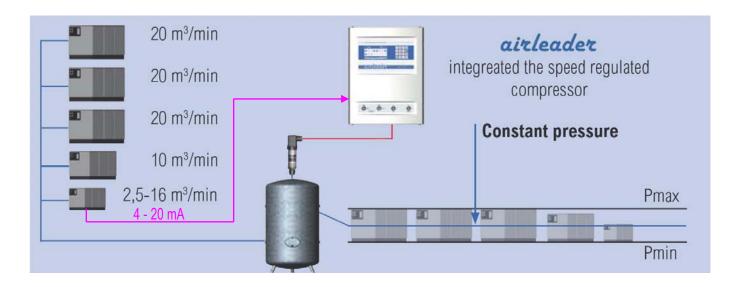
DISPLAY and KEY CONTROL


Pressure Air consumption 7.46 bar 18,4 m3/min B02 B03 B04 B05 B06 **B07** B08 B01 B01 compressor load B05 compressor fault B02 compressor unload B06 not programmed B03 compressor ready B07 compressor manual B04 compressor not ready B08 fault of RS 485 DEWPOINT ENERGY MEASUREMENT TEMPERATURE 5,2 °C 122,5 kWh 25,2 °C

Analog input: AE2 AE3 AE4 on Master Modul

For indication of compressor symbols press button

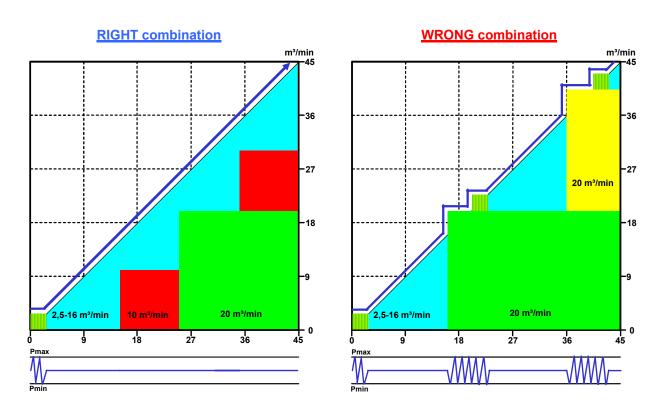
Function of analog inputs see Page 8


Button	Function
E	ENTER - open the Main menu
A	Coursor upper
▼	Coursor lower
⋖ ▶	Cursor right
+- und ◄ ▶	press simultaneos = Cursor left
E und ◀►	Back to the Main picture
4	Showing status of compressors
7	Showing status of connection modules for external equipment
1 und ▲	More contrast of display
1 und ▼	Less contrast of display
1	Means YES (Y)
0	Means NO (N)

Control and interpretation of regulated compressors

The various speed regulated compressor is integrated actively

The VSD compressor send the information about the motor speed over an analog output to AIRLEADER. This parameter must be programmed to the minimal and maximum capacity of the delivered compressed air. The analog output of the VSD compressor have to be 4-20 mA. VSD Compressors with an analog output of 0-10 VDC must be changed from 0-10 VDC with a receiving multicoupler to 4-20 mA.


The pressure Setpoint of the VSD compressor must be centrically programmed between the AIRLEADER switch points.

The right combination of compressor capacities

together with speed regulated and normal compressors with a firm performance is decisive for good results in regulation. Is the various speed regulated compressor the smallest in combination with only bigger compressors there are only small section regulated by the various speed compressor. Big mechanical hurdle cannot be regulated directly.

Example of the right interpretation of the performances:

Configuration of regulation range and regulation buffer

Examble with a VSD Compresor with a regaulation range between 2,5 - 16 m³/min -

The free definable regulation range max

switches load/unload compressors ON and OFF within the pressure settings of AIRLEADER. The regulation limits are defined with the regulation range max and the regulation buffer. Is the regulation range max adjusted lower than the maximum capacity of the VSD, the regulation range max and the regulation buffer will be activated.

Setting the "regulation range max"

Examble: the regulation range max will be programmed to 15 m of m³/min. If than the compressed air consumption is going higher than 15 m³/min a time flexible trend calculation watches the compressed air consumption and switches another compressor on (10 m ³/min like example). Within the pressure switch points of AIRLEADER. If the speed's regulated compressor reaches the regulation range max the second time together with the 10 m ³/min compressor at 25 m ³/min air consumption again, the 10 m ²/min compressor will be replaced with the 20 m ³/min compressor directly.

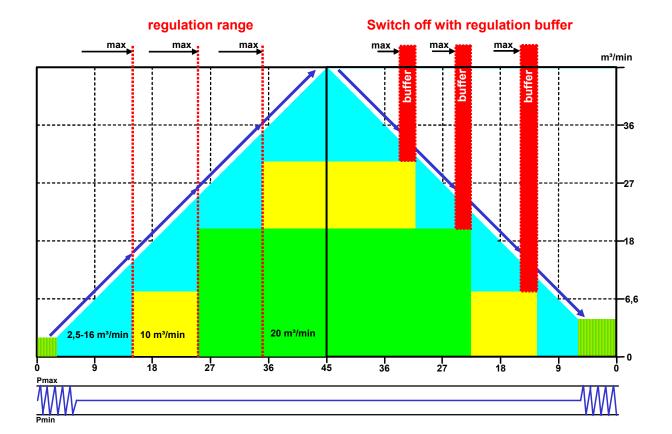
The 10 m ³/min compressor will be switched on if air consumption reaches the regulation range max of the regulated compressor at 35 m of ³/min together with the 20 m ³/min compressor.

Setting the "regulation buffer"

Examble: the regulation buffer will be programmed to 1,5 m³/min. If the compressed air consumption is getting lower and the regulated compressor comes to the point "lower than 15 m³/min" together with the 10 and 20 m³/min compressor the regulation buffer of 1,5 m³/min will be activated. The air consumption get again 1,5 m³/min lower a time flexible trend calculation stops the 10 m³/min compressor inside the adjusted pressure switch points at the AIRLEADER. The VSD compressor regualtes to the capacity of 13,5 m³/min.

Correct setting of regulation buffer

Regulation range max	=	15,0 m³/min
Regulation buffer	=	-1,5 m³/min
Min compressor capacity	=	-2,5 m³/min
Control sum	=	11,0 m³/min


Uncorrect setting of regulation buffer

Regulation range max	=	15,0 m³/min
Regulation buffer	=	-3,5 m³/min
Min compressor capacity	=	-2,5 m³/min
Control sum	=	9.0 m³/min

Note

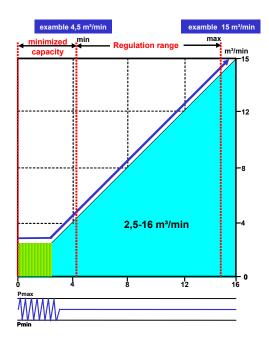
- the regulation range max will be activ if the control sum is smaller than the capacity of the load/unload compressor
- the regualtion buffer is active if the controll sum is higher than the capacity of the load/unload compressor

The VSD compressor will be run in his best specific range.

Minimum flow rate and remote pressure supply

Settings "minimum flow rate" of variable speed compressor

By setting the minimum capacity in the menu of the speed regulated compressor can be determined whether or below the minimum delivery amount of a normal compressor compressor in load / idle to run mode.

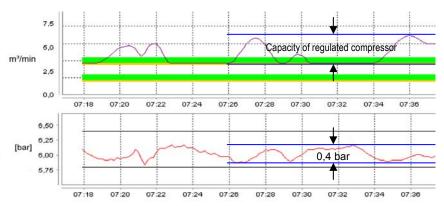

Setting the minimum flow rate of 0 m / min causes:

The speed controlled compressor is running in start / stop operation as long as the consumption of compressed air is from 0 to $2.5 \, \text{m}^3$ / min.

Setting the minimum flow rate of 2.5 m³ / min causes:

Below 2.5 m³/min compressed air consumption a normall compressor is running in a load / unload mode. The downshift is receding in consumption with a hysteresis

This mode is only economic if the air station with a small compressor as 2.5 to 4 m / min is installed in addition


Remote pressure supply through analog output at the RS-485 connection module

Pressure differences by dryers and filters

cause may be between the pressure transmitter of the controlled compressor, and the master control rule up to 0.4 bar difference.

A precise control of pressure within very close limits is not possible. The pressure difference at the higher level control must be expanded by the pressure value can be set. This results in a pressure differential of 0.7 bar.

(More than at a station without a regulated compressor)

With the remote control actual pressure value

ensure that the regulated compressor can be operated in conjunction with the master control in a narrow pressure limit. The analog output of the connection module, deliver the current actual pressure of AIRLEADER via 4-20 mA. If the compressor pressure transmitter has an different range, than the output has to be adjusted accordingly.

Exemble:

AIRLEADER 0-16 bar = 4-20 mA

Compressor 1-20 bar = 4-20 mA or Compressor -1-15 bar = 4-20 mA

An offset value setting for remote actual pressure

can be programmed via the menu of regulated compressor to the pressure setpoint of the controlled compressor to adjust the pressure difference.

This is especially important when more than 1 controlled compressor is installed in the compressed air network and the analog values do not match the individual compressors

Station with 2 variable speed compressors

In a station with 2 regulated compressors

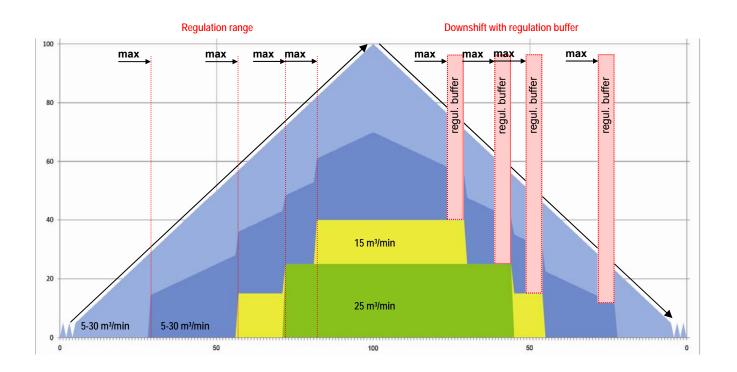
the pressure transducer of regulated compressors in the same place as the pressure transmitter of the AIRLEADER feel, because differences in pressure of compressed air dryers and filters, the control behavior can influence each other greatly. The configuration is described on page 4.

Settings "regulation range max" und regulation buffer

exemble 1: 2 variable speed compressors with same capacity

compressor	compressor type	m³/min	Regulation range max	Regulation buffer	Min. flow rate
1	Variable speed	5-30	28 m³/min	5 m³/min	0
2	Variable speed	5-30	28 m³/min	5 m³/min	0
3	load / unload	15	-	-	-
4	load / unload	25	-	-	-

exemble 2: 2 variable speed compressors with different capacities


compressor	compressor type	m³/min	Regulation range max	Regulation buffer	Min. flow rate
1	Variable speed	1,5-10	9 m³/min	1,5 m³/min	0
2	Variable speed	5-20	18 m³/min	4 m³/min	0
3	load / unload	15	-	-	-
4	load / unload	25	-	-	-

In exemble 2

- if compressor 1 reach the regualation range max it changes to compressor 2
- if compressor 2 reach the regualation range max compressor 1 start again
- if both compressors reach the regulation gange max one of th load / unload compressor will be started
- the controller decides, dependent of air consumption that one of the regulated compressor can be switched off

The regulation range max

ensure that regulated compressors are always in the correct specific area. If an varaiable speed compressor delivers more air than the setting of the regulation range max, the control started a flexible trend calculation to start the next load/unload compressor. Dependent of the compressed air consumption.

Programming load /unload compressors

7.05 bar 37.2 m3/min

PROGRAMMING COMPRESSOR CONTROL

PROGRAMMING ANALOG-DIGITAL INPUTS

STATUS DATA

CLOCK RELAY

LANGUAGE

DEWPOINT

1.3°C

TEMPERATURE

18.7°C

7.05 bar 37.2 m3/min programming compressor control

COMPRESSOR MODULE

PRESSURE SWITCH POINTS

COMPRESSOR ORDER OF SEQUENCE

TIME CYCLE COMPRESSOR ORDER

CONTROL PARAMETER

DEWPOINT TEMPERATURE

1.3°C 18.7°C

П	7 .	0 5 _{bar}	37.2 _{m3/min}
С	NO	v s	COMPRESSOR CAPACITY
0			
M	0 1	N	20,0 m3/min
P	0 2	N	20,0 m3/min
R	0 3	N	18,0 m3/min
E	0 4	N	18,0 m3/min
s	0.5	N	12,5 m3/min
s	0 6	N	12,5 m3/min
0	0.7	N	0,0 m3/min
R	0.8	N	0,0 m3/min
			3,5
DEW	POIN'	т	TEMPERATURE
1 . 3		'	1 8 . 7 ° C
1.3	U		10.7.0

7.05 bar 37.2 m3/min

COMPRESSOR MODULE 02 PROGRAMMING

AE1: CURRENT MEASUREMENT
ENERGY MEASUREMENT
Imin: 4,0 mA 0,0
Imax: 20,0 mA 200,0

AE2: TEMPERATURE MEASUREMENT
UNIVERSAL SENSOR

DEWPOINT
TEMPERATURE
1.3°C

18.7°C

Programming the compressor capacities
Press "E" (Enter) to open the main menu.
Select the menu "programming
compressor control" to program:

- Compressor module (capacities)
- Pressure switch points
- Compressor order of sequence
- Time cycle compressor order
- Control system parameter

Store data with "E" (ENTER)

The compressor capacities will be programmed in the menu "Compressor Module".

The capacities are definied in m³/min.

Analog inputs for compressors

If compressor capacity is selected,
-press "ENTER" to go in the menu of
analog inputs for the compressor

Analog input AE 1

for connection of:

- CT-clamps
- kW-meter

Analog input AE 2

for connection of:

- Temperatur sonsor
- Universal sensor input

Programming the variable speed compressors

	7.	0 5 _{bar}	37.2 _{m3/min}
С	Nг	v s	COMPRESSOR CAPACITY
0			
M	0 1	N	20,0 m3/min
P	02	N	20,0 m3/min
R	0 3	N	18,0 m3/min
E	0 4	N	18,0 m3/min
S	05	N	12,5 m3/min
S	0 6	N	12,5 m3/min
0	07	Υ	2,5 16,0 m3/min 2,5 16,0 m3/min
R	0 8	Υ	2,5 16,0 m3/min
DEW	POIN.	Г	TEMPERATURE
1 . 3	° C		18.7°C

```
7.05 bar
                                                 7.2_{\text{m3/min}}
       COMPRESSOR MODULE 07 PROGRAMMING
           SPEED CONTROL COMPRESSOR Imin 6,2 mA 2,
A E 1 :
                                                       m3/min
                           18,5 mA
            lmax
           max regulat. range regulation buffer min compair flow
                                                       m3/min
           TEMPERATUE MEASUREMENT
CURRENT MEASUREMENT
ENERGY MEASUREMENT
                                                    N
AE2:
                                                    N
DEWPOINT
                                                 TEMPERATURE
1 . 3 ° C
```

```
7.05 bar 37.2 m3/min COMPRESSOR MODULE 07 PROGRAMMING

AE1: SPEED CONTROL COMPRESSOR

Imin 6.2 mA 2,5 m3/min 6,0 m3/min max regulat. range: 15,0 m3/min regulation buffer: 2,0 m3/min min comp air flow: 0,0 m3/min min comp air flow: 0,0 m3/min min comp air flow: 0,0 m3/min min comp air flow: 150,0 °C Amin 05,0 °C Amax 95,0 °C TEMPERATURE

1.3°C TEMPERATURE MEASUREMENT TEMPERATURE

1.3°C
```

```
7.05 bar

COMPRESSOR MODULE 07 PROGRAMMING

PARAMETER ANALOG OUTPUT AO:

Imin: 4,0 mA = 0,00 bar
Imax: 20,0 mA = 16,00 bar

AVERAGE VALUE OUTPUT N

OFFSET 0,10 bar

DEWPOINT TEMPERATURE
1.3°C 18.7°C
```

Variable speed compressor:

Under VS (variable speed) select Y (YES) for programming an various speed compressor.

For load/unload compressors select N (NO).

Button "1" means "J" (YES) Button "0" means "N" (NO).

- Set minimum capacity
- Set maximum capacity
- Press "E" for confirmation

Press "E" (ENTER) for configuration of

- analog output signal of inverter
- Regulation range
- Regulation buffer
- Minimum air flow

The minimum and maximum

- Capacity of various speed compressor must be the same as from the compressor manufacturer given data
- The mA of the inverter must be programmed as it is in the minimum and maximum speed of the compressor

Examble:

minimum capacity 2,5 m³/min = 6,2 mA measured maximum capacity 16,0m³/min = 17,2 mA measured

Regulation range and regulation buffer see Page 4+5

Analog input AE2:

programmable for following sensors

- Temperature
- CT-clamp
- kW-Meter

Analog output of connection module

Deliver the pressure signal of the master control (see page 6) if average value output setting is "N".

Average output of pressure signal

If setting is programmed "Y" the output send the average pressure signal od pressure settings.

Exemble: Pmin 6,0 bar, Pmax 7,0 bar Average output = 6,5 bar Note: If average value output is programmed to "Y" it belongs an another connection module for the pressure signal of the control.

Programming - pressure and rank profiles

PRESSURE PROFILE

Menu "pressure switch points". 4 different pressure profile can be programmed. The pressure profile 2, 3, and 4 can be selected over:

- real time clock
- digital input 1, 2 and 3

RANK PROFILES

Menu "compressor order of sequence"

Examble:

Follwing compressors shall be controlled

- compressor 1 with 20 m³/min
- compressor 2 with 18 m³/min
- compressor 3 with 18 m³/min
- compressor 4 with 13 m³/min
- compressor 5 with 10 m³/min
- compressor 6 with 10 m³/min

Special request

- Compressor 1 + 6 is connected to an heat recovery
- Compressor 3 is very old, only for using as standby compressor

Recommended programming

- compressor 1+6 rank 1
- compressor 2+4+5 rank 2
- compressor 3 rank 3

Compressors in the rank stage 1

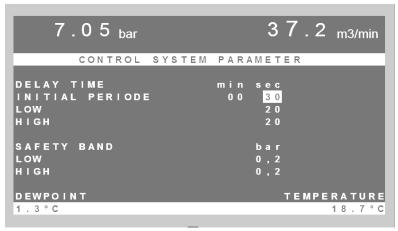
will be controlled denpendent on air consumption. If this is not enough, the compressors of the rank 2 helps rank 1

Time cycle compressor order

In this menu equal hour for compressors with the same capacity can be programmed.

Control system parameter:

changing of this settings only with coordination by the manufacturer.


ATTENTION:

Only compressor on the same rank stage will be controlled automaically by the dependent airconsumption.

п	7.05 _{bar}		3 7	. 2 _{m3/min}
P	PP	Pmin	Pmax	P-Alarm
R E S	0 1	6.00	6.50	5.50 bar
U	0 2	5.00	5.50	4.40 bar
R E	0 3	4.00	4.50	3.30 bar
DEW	04 POINT	3.00	3.50 TI	2.20 bar EMPERATURE
1 . 3				18.7°C

Analog - Inputs of Master

7.05 bar 37.2 m3/min

PROGRAMMING COMPRESSOR CONTROL

PROGRAMMING ANALOG-DIGITAL INPUTS

STATUS DATA

CLOCK RELAY

LANGUAGE

DEWPOINT

1.3°C

TEMPERATURE

1.3°C

ANALOG inputs on Master Module
AIRLEADER Master has as standart
4 analog inputs

7.05 bar 37.2 m3/min programming analog-digital inputs

MASTER ANALOG INPUTS

ANALOG-DIGITAL INPUTS MODULE 17...24

DEWPOINT TEMPERATURE 1.3°C 18.7°C

37.2 m3/min 7.05 bar MASTER ANALOG INPUTS AE2: NO SENSOR NET PRESSURE DEWPOINT SENSOR TEMPERATURE SENSOR FLOW SENSOR EXTRA PRESSURE CURRENT MEASUREMENT ENERGY MEASUREMENT UNIVERSAL SENSOR AMPERE KW SENSOR DEWPOINT TEMPERATURE 1 . 3 ° C 18.7°C

7.05 bar 37.2 m3/min MASTER ANALOG INPUTS AE2: DEWPOINT MEASUREMENT Tmin: -60° Amin: 2.0°C Tmax: 30 Amax: 10.0°C DEWPOINT TEMPERATURE 1.3°C 18.7°C

Anlog input "AE1"

only for pressure transducer. The pressure transducer extend the supply of AIRLEADER and is includet. No other sensor should be connected to the system. The pressure is displayed in the display on the left head line.

Analog input AE2, AE3, und AE4 can be used for following sensors:

- Dew point
- Temperature
- Flow
- Extra pressure
- Current measuring
- Energy measuring

For each analog input

is an digital output available for alarm signals

Programming of alarm signals:

- for minimum signal
- for maximum signal can be programmed for each connected analog sensor. The measurements of these sensors are displayed permanently in the footer line of the display.

Parameter setting of analog inputs for examble:

- 4 mA upper data (Tmin)
- 20 mA lower data (Tmax)

The window for the alarm specification is programmable vacant within the sensor values.

ANALOG + DIGITAL-INPUTS of connection modules

ANALOG and DIGITAL inputs

Up to 8 connection modules can be connected for external analog sensors and digital potential free contacts of dryers, condensate drains etc. The digital signals can be used as fault or running signals.

These modules get the number 17-24.

Address settings by the 8 DIP switches

Every connection module has following out and inputs:

- 2 analog inputs for analog sensors with 4-20 mA Signal
- 3 digital inputs for fault an running signal of external equipment
- 1 analog output 4-20 mA over the range of the connected net pressure transducer
- 2 digital outputs (C-NO-NC 230VAC 2A) for signal outputof connected analog sensors (alarm set points)

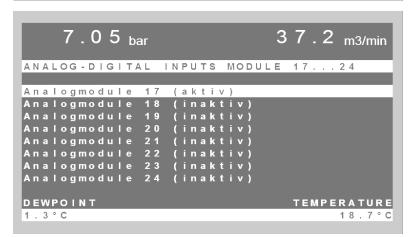
Possible sensors for the analog inputs:

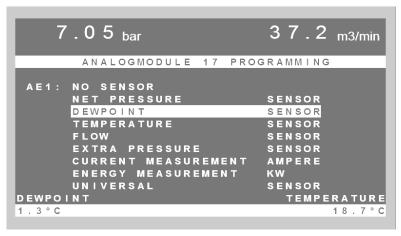
- Dewpoint
- Temperature
- Extra pressure
- Flow
- Current measurement
- Energy measurement

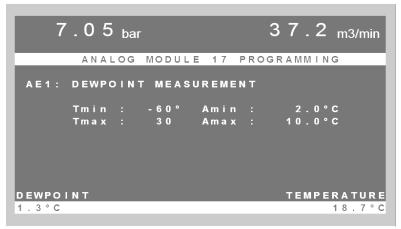
The 8 connection modules put up to

24 digital messages

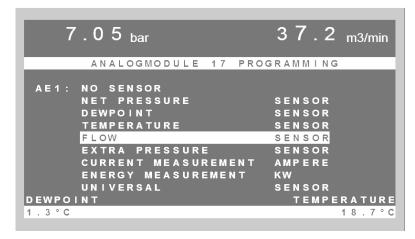
and up to

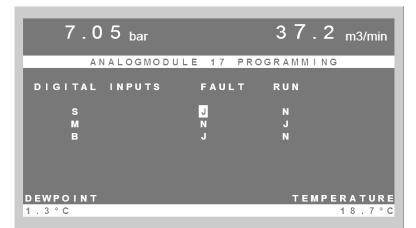

16 analog inputs for sensors

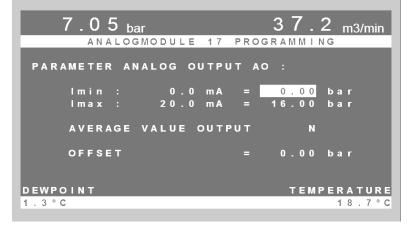

```
7.05 bar 37.2 m3/min programming analog-digital inputs


ANALOG-EINGÄNGE AM MASTERGERÄT

ANALOG-DIGITAL INPUTS MODULE 17...24


DEWPOINT TEMPERATURE 1.3°C 18.7°C
```



Digital and Analog output on connection module

7.05 bar 37.2 m3/min ANALOGMODULE 17 PROGRAMMING AE2: FLOW MEASUREMENT Fmax: 50.0 m3/min DEWPOINT TEMPERATURE 1.3°C 18.7°C

Configuration Flow Sensor

If a flow sensor connected to the analog input, the value of Fmax is the maximum measurable flow at 20 mA

The measurement of a flow sensor is, the measured air speed in the compressed air pipeline.

The definition is meters / second.

At the maximum air speed e.g. 185 m / sec is applied to the analog output of flow sensor 20 mA.

With a pipe diameter of 100mm are approximately 73 m³ / min flow

To the digital inputs of the connection module can be connectted malfunction of refrigerant dryers, filters, steam traps, oil-water separators, booster compressors, etc.

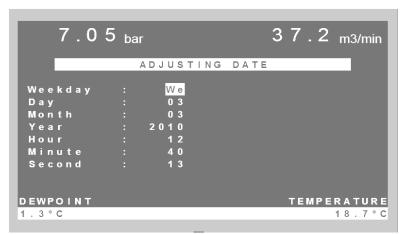
These inputs are defined as SMB disorder (Y).

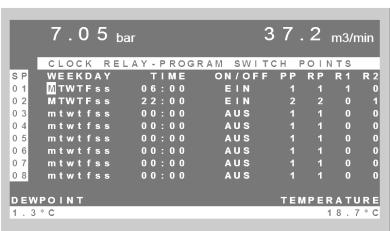
At fault is a fault signal to digital output 6 of the master module is issued.

In the Web-server visualization an alert is generated.

If these inputs are used as an operations report must be programmed on that channel on "Operation" with (J).

Analog output at the connection module
It is the actual pressure signal from the


AIRLEADER as long as the average output is in No (N) position. . (See page 6)


Note: If average value output is programmed to "Y" it belongs an another connection module for the pressure signal of the control.

PROGRAMMING REAL TIME CLOCK

The clock relay

permits following time controlled functions

- Switchung compressors ON/OFF
- 4 pressure profiles
- 4 rank profiles
- 2 digital outputs for relays to switch ON/OFF additional equipment like (Dryer, ball valves, etc.)

The dates for the 2nd, 3rd. and 4th pressure profil and rank profil must be configurated in the main menu

Note down all attitudes

for all program switching functions so that no being missing programming arise

Switching bridge "CLOCK"

The real time clock is only activated over the switching bridge generally. Up to 16 switching points can be programmed in the menu clock

Examble:

1. Monday to Friday from 6:00-22:00h

- Control system ON
- Pressure profil 1
- Rank profil 1
- Digital output R1 ON for dryer

2. Monday to Friday from 22:00-24:00 h

- Lower pressure with pressure profil 2 and rang profil 2
- At the same time switching to a smaller dryer switched by digital output R2

3. At 00:00 h

 The compressed air equipment is switched OFF by the clock relay

Selected days with CAPITAL LETTERS will be switched by the real time clock

Removing the switching bridge "CLOCK" deactivated the clock relay functions.

The compressors management is switching the compressors to the

- 1st pressure profile
- 1st rank profile that is programmed in the basic menu over the data of the 1st pressure and 1st rank profile.

CLOCK - PROGRAMMING - NOTES

Compress	Compressor chanels							
Nr.	1	2	3	4	5	6	7	8
Name								
Nr.	9	10	11	12	13	14	15	16
Name								

Pressure	Pressure profile = PP							
Nr.	P min	P max	P Alarm					
1	bar	bar	bar					
2	bar	bar	bar					
3	bar	bar	bar					
4	bar	bar	bar					

Compress	Compressor rank profile = RP							
Kompr.	1	2	3	4	5	6	7	8
1.RF								
2.RF								
3.RF								
4.RF								

Clock relay switching times and functions													
SP	Day of the week							Time	LS	PP	RP	R1	R2
1	М	Т	М	Т	F	S	S						
2	М	Т	М	Т	F	S	S						
3	M	Т	М	Т	F	S	S						
4	М	Т	М	Т	F	S	S						
5	М	Т	М	Т	F	S	S						
6	М	Т	М	Т	F	S	S						
7	М	Т	М	Т	F	S	S						
8	М	Т	М	Т	F	S	S						
9	М	Т	М	Т	F	S	S						
10	М	Т	М	Т	F	S	S						
11	М	T	М	Т	F	S	S						
12	М	Т	М	Т	F	S	S						
13	М	T	М	T	F	S	S						
14	М	Т	М	Т	F	S	S						
15	М	Т	М	Т	F	S	S						
16	М	Т	М	Т	F	S	S						

STATUS DATA

Status data

The following status data can be selected in this menu:

- Compressor running times
- Deleting compressor running times
- Status of compressor modules
- Status of connecting modules for external equipment

The running times of the compressors

- Load hours
- Total hours

The running hours are stored from the time of operation with AIRLEADER

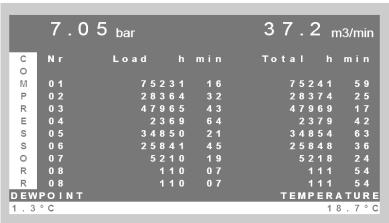
Delete running times

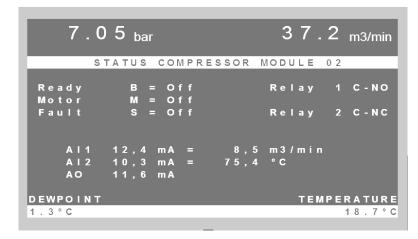
It is possible to delete the running times of all compressors. If the compressor running times shall be deleted, put the value on "Y" with the button "1" (YES) and confirm this with "E" (Enter)

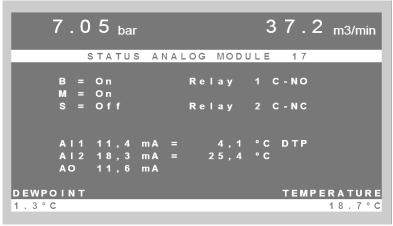
Status of Compressor modules shows

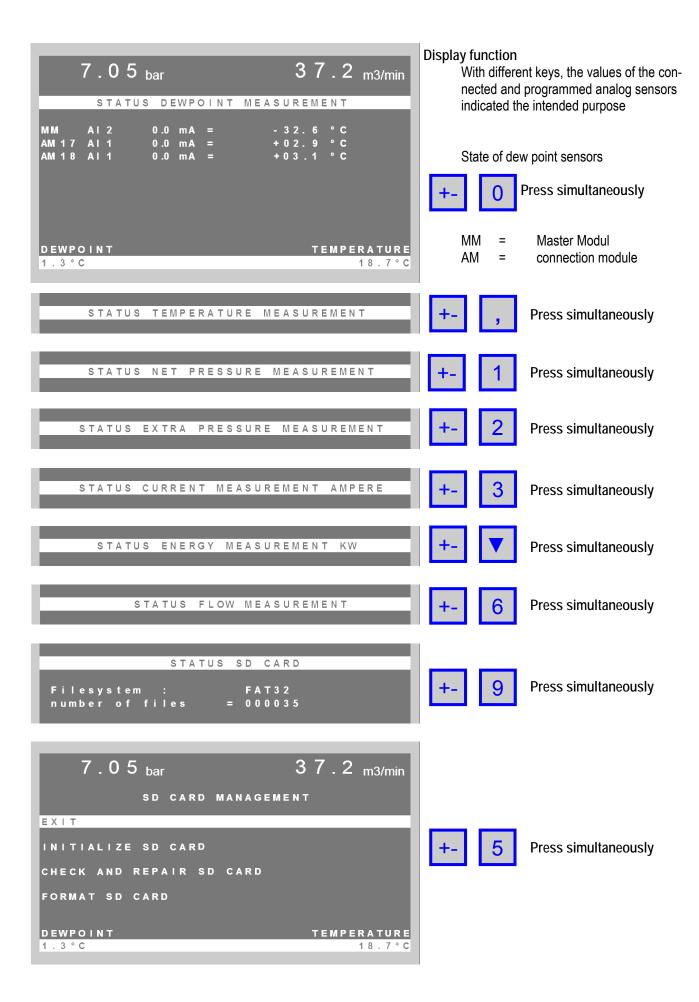
- status of digital inputs
- Digital outputs
- Analog inputs
- Analog output

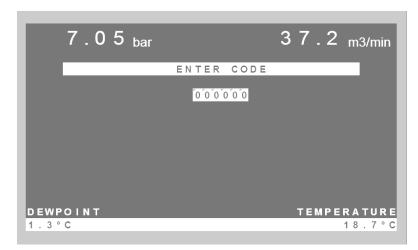
Press button

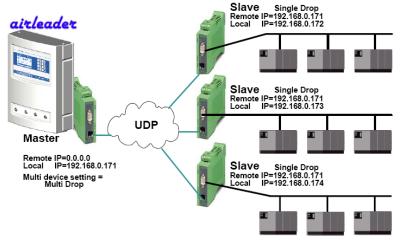

Status of connected analog modules shows


- fault or running signal of dryer, filter, condensate drain etc.
- Analog value of connected sensors like dewpoint, temperature etc.


Press button






Display features

IP-address and Network settings

7.05 bar 37.2 m3/min PROGRAM FACTORY SETTINGS IP - Addresse = 192.168. 0.100 Subnet mask = 255.255.255.255 Standartgateway = 192.168. 0. 1 DEWPOINT TEMPERATURE 1.3°C 18.7°C

7.05 bar 37.2 m3/min PROGRAM FACTORY SETTINGS Waiting answer slave : 200ms DEWPOINT TEMPERATURE 1.3°C 18.7°C

ATTENTION:

Before starting the Web-server, control the date of AIRLEADER and set the clock to the current time

Step 1 activate programming bridge Step 2 press simultaneously

Program IP-address

ENTER CODE

Press button enter "E"

Set Code "000000"

IP-addresse program following parameter

- IP-Adresse
- Subnetzmaske
- Standartgateway

Communikation via Ethernet

The connection between AIRLEADER and the connection modules for compressors and other components can be done via the Ethernet by using the COM server.

The RS-485 interface AIRLEADER is connected to a COM server.

The COM server gets an IP address that matches the IP address range.

More COM-server can be connected to the Ethernet with different IP addresses.

Program waiting time for slave response

Program waiting time "200 ms"

If necessary changeable up to 250 ms

COMMISSIONING and SWITCHING FUNCTIONS

Connecting -Modules

for compressors has to mounted on a DIN-rail in the electrical housing in of the compressor

The pressure switches of the compressors now become "safety pressure switches". Examble:

Pressure setting of AIRLEADER	=	6,0 - 7,0 bar
Setting of compressor pressure switched	=	6,5 - 7,5 bar

In case of absence of current, the contact's of the connecting module are closed.

The compressors are controlled by their installed pressure switches

Check the pressure connection of the pressure tranducer

ATTENTION:

It is absolutely necessary to install the transducer at a calm part of the compressed air line. As an optimum we recommend a seperate 1/2" line leading from the receiver to the tranducer.

Switching ON delay time is 30 sec (default by manufacturer).

Connect cable bridge **START**

with an cable or a switch. AIRLEADER will start your compressed air station. From now on your compressors are energy saving controlled and depending on your real consumption of compressed air.

Programming the various capacity of the various speed compressor

it is absolutely necessarily, to program the minimal and maximum capacity of the regulated compressor (according to the manufacturer's indications) together with the mA values appropriately correctly.

Examble: minimum capacity = 2,5 m³/min = 6,2 mA measured maximum capacity = 16,0 m³/min = 17,2 mA measured

please see the programming instructions

12. Switching functional description

Switching bridge: START

With this switching bridge the compressors will be switched ON / OFF.

Bridge activated = The compressors will be controlled by AIRLEADER

Bridge deactivated = The compressors turn OFF

Switching bridge: PROG

If this is activated, all program parts can be programmed.

To programming the compressor capacities the switching bridge START may not be activated.

Switching bridge: CLOCK:

If this bridge is activated, the CLOCK will be activated. If this bridge is deactivated the compressor management is switching the compressors now over the 1st pressure rank profile that is programmed in the basic menu.

Switching bridge: Manual:

If this bridge is activated, the compressors will be switched back to their own controller and will be controlled over the pressure setting of the compressor controller.